Multiscale Dynamic Time and Space Warping
Xem mô tả
0
Xem & Tải
0
Tóm tắt
Mô tả
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2008.
Includes bibliographical references (p. 149-151).
Dynamic Time and Space Warping (DTSW) is a technique used in video matching applications to find the optimal alignment between two videos. Because DTSW requires O(N4) time and space complexity, it is only suitable for short and coarse resolution videos. In this thesis, we introduce Multiscale DTSW: a modification of DTSW that has linear time and space complexity (O(N)) with good accuracy. The first step in Multiscale DTSW is to apply the DTSW algorithm to coarse resolution input videos. In the next step, Multiscale DTSW projects the solution from coarse resolution to finer resolution. A solution for finer resolution can be found effectively by refining the projected solution. Multiscale DTSW then repeatedly projects a solution from the current resolution to finer resolution and refines it until the desired resolution is reached. I have explored the linear time and space complexity (O(N)) of Multiscale DTSW both theoretically and empirically. I also have shown that Multiscale DTSW achieves almost the same accuracy as DTSW. Because of its efficiency in computational cost, Multiscale DTSW is suitable for video detection and video classification applications. We have developed a Multiscale-DTSW-based video classification framework that achieves the same accuracy as a DTSW-based video classification framework with greater than 50 percent reduction in the execution time. We have also developed a video detection application that is based on Dynamic Space Warping (DSW) and Multiscale DTSW methods and is able to detect a query video inside a target video in a short time.
by Fitriani.
S.M.
Includes bibliographical references (p. 149-151).
Dynamic Time and Space Warping (DTSW) is a technique used in video matching applications to find the optimal alignment between two videos. Because DTSW requires O(N4) time and space complexity, it is only suitable for short and coarse resolution videos. In this thesis, we introduce Multiscale DTSW: a modification of DTSW that has linear time and space complexity (O(N)) with good accuracy. The first step in Multiscale DTSW is to apply the DTSW algorithm to coarse resolution input videos. In the next step, Multiscale DTSW projects the solution from coarse resolution to finer resolution. A solution for finer resolution can be found effectively by refining the projected solution. Multiscale DTSW then repeatedly projects a solution from the current resolution to finer resolution and refines it until the desired resolution is reached. I have explored the linear time and space complexity (O(N)) of Multiscale DTSW both theoretically and empirically. I also have shown that Multiscale DTSW achieves almost the same accuracy as DTSW. Because of its efficiency in computational cost, Multiscale DTSW is suitable for video detection and video classification applications. We have developed a Multiscale-DTSW-based video classification framework that achieves the same accuracy as a DTSW-based video classification framework with greater than 50 percent reduction in the execution time. We have also developed a video detection application that is based on Dynamic Space Warping (DSW) and Multiscale DTSW methods and is able to detect a query video inside a target video in a short time.
by Fitriani.
S.M.
Năm xuất bản
Tác giả
Fitriani
Nhà xuất bản
Massachusetts Institute of Technology